# Contraception and HIV Risk: Evidence and Unknowns

Jared Baeten MD PhD
Departments of Global Health and Medicine
University of Washington

MTN Annual Meeting February 2012

#### Contraception

- Safe and effective contraception is essential to health and development of women, children, and families worldwide
- Contraceptives have known "non-contraceptive" side effects (cancer, BMD, thromboembolism)



### The question

 Does using hormonal contraceptives change a woman's risk of acquiring (or, if she is HIV+, transmitting) HIV?

### The question(s)

- Does using hormonal contraceptives change a woman's risk of acquiring (or, if she is HIV+, transmitting) HIV?
  - Is that driven by a biologic effect, or it is mediated through changes in sexual behavior? Some of both?
  - If there is increased HIV risk, is it for all contraceptives or just some?
  - If there is increased HIV risk, how to weigh that within a context of other risks incurred by changing contraceptive options/choices?

## Non-human primate studies

## Progesterone implants enhance SIV vaginal transmission and early virus load

Preston A. Marx<sup>1,2</sup>, Alexander I. Spira<sup>1,2</sup>, Agegnehu Gettie<sup>1</sup>, Peter J. Dailey<sup>3</sup>, Ronald S. Veazey<sup>4</sup>, Andrew A. Lackner<sup>4</sup>, C. James Mahoney<sup>5</sup>, Christopher J. Miller<sup>6</sup>, Lee E. Claypool<sup>7</sup>, David D. Ho<sup>1</sup> & Nancy J. Alexander<sup>8</sup>

#### Summary

- High-dose protesterone
- Increased SIV transmission risk >7-fold
- Thinned vaginal epithelium (mechanism?)
- Also resulted in higher viral load in plasma
- For many subsequent evaluation studies of vaccines and microbicides, pre-treatment with progestin is used to enhance transmision risk.

Marx Nature Medicine 1996

#### Possible biologic mechanisms

- Vaginal and cervical epithelium (mucosal thickness, cervical ectopy, etc.)
- Changes in cervical mucus
- Menstrual patterns
- Vaginal and cervical immunology
- Viral (HIV) replication
- Acquisition of other STI that may serve as mediators
- However, data are often sparse or potentially could point in different directions, and, most importantly, no laboratory study would be sufficient for this question....

#### Epidemiologic studies

- Some epidemiologic studies have suggested that hormonal contraceptives may alter HIV-1 susceptibility in women
  - Evidence seems strongest for injectable progestin contraception
  - Results are inconsistent and study quality varies tremendously



#### Limitations

- Small sample size
- Long follow-up time between study visits
- Poor follow-up rates
- Inability to distinguish between types of hormonal contraceptives (oral v. injectable, etc.), or lack of a comparison group
- No or limited adjustment for confounding factors; insufficient adjustment
- Self-report of contraceptive use and sexual behavior

# Looking at just 3 of the observational studies...

|                                          | Population                                 | Results                                                                           | Limitation                                   |
|------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------|
| Mombasa<br>Lavreys 2004<br>Baeten 2007   | Sex workers<br>Kenya                       | Increased risk<br>OCPs (HR 1.46, p=0.05)<br>DMPA (HR 1.73, p<0.001)               | Sex workers                                  |
| Rakai<br>Kiddugavu 2003                  | Community<br>cohort<br>Uganda              | No increased risk<br>OCP aIRR 1.12<br>injectable aIRR 0.84                        | Infrequent<br>follow-up<br>(10-12<br>months) |
| HC-HIV<br>Morrison 2007<br>Morrison 2010 | FP clinic<br>attendees<br>Uganda, Zimbabwe | Overall increased HIV for DMPA (HR 1.48, p=0.04)  **Marked subgroup differences - | Risk only in subgroup                        |

#### Recent data

## Use of hormonal contraceptives and risk of HIV-1 transmission: a prospective cohort study



Renee Heffron, Deborah Donnell, Helen Rees, Connie Celum, Nelly Mugo, Edwin Were, Guy de Bruyn, Edith Nakku-Joloba, Kenneth Ngure, James Kiarie, Robert W Coombs, Jared M Baeten, for the Partners in Prevention HSV/HIV Transmission Study Team\*

#### Summary

Background Hormonal contraceptives are used widely but their effects on HIV-1 risk are unclear. We aimed to assess the association between hormonal contraceptive use and risk of HIV-1 acquisition by women and HIV-1 transmission from HIV-1-infected women to their male partners.

Methods In this prospective study, we followed up 3790 heterosexual HIV-1-serodiscordant couples participating in two longitudinal studies of HIV-1 incidence in seven African countries. Among injectable and oral hormonal contraceptive users and non-users, we compared rates of HIV-1 acquisition by women and HIV-1 transmission from women to men. The primary outcome measure was HIV-1 seroconversion. We used Cox proportional hazards regression and marginal structural modelling to assess the effect of contraceptive use on HIV-1 risk.

Published Online October 4, 2011 DOI:10.1016/51473-3099(11)70247-X See Online/Comment

DOI:10.1016/S1473-3099(11)70254-7

\*Members listed at end of paper Department of Epidemiology (R Heffron MPH, Prof C Celum MD.

I M Raeten MD). Global Health



#### Objective

- Compare HIV-1 incidence rates among women using and not using hormonal contraceptives
  - HIV-1 acquisition among women
  - HIV-1 transmission from women to men

#### Methods

- Prospective cohort study of 3790 HIV-1 discordant couples from 7 countries in East and southern Africa (Partners in Prevention HSV/HIV Transmission Study)
- Quarterly HIV-1 testing, contraceptive measurement, sexual behavior questionnaire
- Adjusted analyses (age, unprotected sex, HIV+ plasma VL, pregnancy)
  - Cox proportional hazards and marginal structural models



#### HIV-1 acquisition

- Overall, 21.2% of HIV-1 seronegative women used hormonal contraception at least once during follow up
  - Injectable contraception used at least once by 16.0% of women
  - Oral contraception used at least once by 6.7% of women
- There were a total of 73 incident HIV-1 infections
  - HIV-1 incidence rate: 4.09 per 100 person years

## HIV-1 acquisition

|                            |                    | Adjusted regression |         | Adjusted marginal structural model analysis |         |  |
|----------------------------|--------------------|---------------------|---------|---------------------------------------------|---------|--|
|                            | Incidence<br>rate* | HR<br>(95% CI)      | p-value | OR<br>(95% CI)                              | p-value |  |
| No hormonal contraception  | 3.78               | 1.00                |         | 1.00                                        |         |  |
| Any hormonal contraception | 6.61               | 1.98<br>(1.06-3.68) | 0.03    | 1.84<br>(0.98-3.47)                         | 0.06    |  |
| Injectable                 | 6.85               | 2.05<br>(1.04-4.04) | 0.04    | 2.19<br>(1.01-4.74)                         | 0.05    |  |
| Oral                       | 5.94               | 1.80<br>(0.55-5.82) | 0.33    | 1.63<br>(0.47-5.66)                         | 0.44    |  |
| *per 100 person years      |                    |                     |         |                                             |         |  |



#### **HIV-1** transmission

- Overall, 33.3% of HIV-1 seropositive female partners used hormonal contraception at least once during follow up
  - Injectable contraception used at least once by 26.8% of women
  - Oral contraception used at least once by 8.9% of women
- There were 59 HIV-1 seroconversions in initially-HIV-1 seronegative men that were genetically linked to their female study partner
  - HIV-1 incidence rate: 1.75 per 100 person years

#### HIV-1 transmission

|                            |                    | Adjusted regression | Adjusted marginal structural model analysis |                     |         |
|----------------------------|--------------------|---------------------|---------------------------------------------|---------------------|---------|
|                            | Incidence<br>rate* | HR<br>(95% CI)      | p-value                                     | OR<br>(95% CI)      | p-value |
| No hormonal contraception  | 1.51               | 1.00                |                                             | 1.00                |         |
| Any hormonal contraception | 2.61               | 1.97<br>(1.12-3.45) | 0.02                                        | 2.05<br>(1.12-3.74) | 0.02    |
| Injectable                 | 2.64               | 1.95<br>(1.06-3.58) | 0.03                                        | 3.01<br>(1.47-6.16) | 0.003   |
| Oral                       | 2.50               | 2.09<br>(0.75-5.84) | 0.16                                        | 2.35<br>(0.79-6.95) | 0.12    |
| *per 100 person years      |                    |                     |                                             |                     |         |

Injectable users also had small increase HIV-1 RNA in cervical swabs: +0.19 log copies/swab

#### Strengths and limitations

#### Strengths

- Large cohort
- Frequent measurement of HIV, contraceptive use and sexual behavior
- Very high rates of follow up (>90% retention)
- HIV negative partners knew they were being exposed to HIV <u>& all were exposed</u>
- Attention to confounding factors using multiple statistical techniques (multiple additional analyses demonstrate consistent findings)
- First report of female to male transmission and partial biological explanation from increased genital viral loads

#### Limitations

- Observational data
- Inability to distinguish between types of injectables used
- Limited data on oral contraceptive risk
- Limited number of infections among those using contraception

## Why is this topic so difficult?

- Observational epidemiology is completely about:
  - Exposure (contraception)
  - Outcomes (HIV acquisition)
  - Confounders (sexual behavior, etc.)

- Observational epidemiology is completely about:
  - Exposure (contraception)
  - Outcomes (HIV acquisition)
  - Confounders (sexual behavior, etc.)

- Observational epidemiology is completely about:
  - Exposure (contraception)
  - Outcomes (HIV acquisition)
  - Confounders (sexual behavior, etc.)



- Observational epidemiology is completely about:
  - Exposure (contraception)
  - Outcomes (HIV acquisition)
  - Confounders (sexual behavior, etc.)



- Observational epidemiology is completely about:
  - Exposure (contraception)
  - Outcomes (HIV acquisition)
  - Confounders (sexual behavior, etc.)



- Observational epidemiology is completely about:
  - Exposure (contraception)
  - Outcomes (HIV acquisition)
  - Confounders (sexual behavior, etc.)

Contraceptive use



- Observational epidemiology is completely about:
  - Exposure (contraception)
  - Outcomes (HIV acquisition)
  - Confounders (sexual behavior, etc.)
- Exposures measurement needs precision
  - Poor measurement of contraceptive exposure (both accuracy of reporting and precision of timing) risks bias towards the null

- Observational epidemiology is completely about:
  - Exposure (contraception)
  - Outcomes (HIV acquisition)
  - Confounders (sexual behavior, etc.)
- Outcome measurement is potentially easier
  - HIV seroconversion is objective, but its temporal relationship to exposures and confounders is not trivial

- Observational epidemiology is completely about:
  - Exposure (contraception)
  - Outcomes (HIV acquisition)
  - Confounders (sexual behavior, etc.)
- Confounders are tough to measure
  - Particularly self-reported sexual behaviors

- Observational epidemiology is completely about:
  - Exposure (contraception)
  - Outcomes (HIV acquisition)
  - Confounders (sexual behavior, etc.)
- Relative risk estimates <2 are extremely difficult to measure
  - Lots of opportunity for both imprecision and bias to result in spurious findings

#### Strengths of available observational data

- Large studies, low loss to follow-up
- Multinational populations
- Multiple risk groups
- Frequent measurement of contraceptive exposure and HIV outcome
- Measurement of confounding factors

#### Strengths of available observational data

- Large studies, low loss to follow-up
- Multinational populations
- Multiple risk groups
- Frequent measurement of contraceptive exposure and HIV outcome
- Measurement of confounding factors

Thus, available data have many of the design characteristics we'd like

#### What else would be the ideal?

- Perfect capture of contraceptive use
- Fully accurate characterization of confounding factors, particularly sexual behavior
- Capture of all potential confounding factors
- Large number of HIV seroconversions, including by different contraceptive types and within subgroups, so that study power is not limiting

#### What else would be the ideal?

- Perfect capture of contraceptive use
- Fully accurate characterization of confounding factors, particularly sexual behavior
- Capture of all potential confounding factors
- Large number of HIV seroconversions, including by different contraceptive types and within subgroups, so that study power is not limiting

These may be difficult to achieve

#### New sources of data...

- Large randomized trials of novel HIV prevention strategies (PrEP, microbicides) could be analyzed for this question:
  - Large sample sizes, geographic diversity
  - Very complete and careful collection of HIV outcomes
  - Prospective (but not necessarily good) measures of sexual behavior

#### Limitations of prevention RCT datasets

- Careful measurement of contraceptive method was not a primary goal of these studies
- Many women in microbicide trials are unexposed to HIV and hard to know if that is related to contraceptive choice (in which case would be a huge confounder)
- Contraception often <u>required</u> for study entry
  - Possibility of limited/no "control" group
  - Accuracy of exposure is a potential concern women may inaccurately self-report use in order to stay in the trial

#### And what about an RCT?

## Challenges of an RCT (1)

- RCTs answer 1 question
  - It is not clear whether the field has a single question here (beyond the too-vague "is DMPA bad?")
    - DMPA vs. IUD
    - DMPA vs. IUD vs. implant
    - Etc.

## Challenges of an RCT (2)

- RCTs maintain their integrity when they are wellconducted:
  - High retention
  - High protocol and product adherence (no switching!)
  - Non-differential confounding (which is only likely protected by full <u>blinding</u>)
- Or might just end up analyzing as an observational study

## **Concluding Point**

- 25 years of epidemiologic and biologic studies have attempted to assess the relationship between contraceptive use and HIV-1 acquisition (and transmission)
- The fact that there remains uncertainty today suggests that this is a question for which it is tough provide absolute clarity

Can we continue to make important public health decisions realizing that we may have to operate without certainty?

## Acknowledgements

#### Funding sources:

- National Institutes of Health (R03 HD068143, R01 Al083034, P30 Al027757)
- Bill & Melinda Gates
   Foundation
- University of Washington STD/AIDS Research Training Grant Program, T32 AI007140

#### Partners in Prevention HSV/HIV Transmission Study Team

#### <u>University of Washington Coordinating Center and Central</u> <u>Laboratories - Seattle, WA</u>

Connie Celum, Anna Wald, Jairam Lingappa, Jared Baeten, Mary Campbell, Lawrence Corey, Robert Coombs, James Hughes, Amalia Magaret, M.Juliana McElrath, Rhoda Morrow, James Mullins

#### **Site Principal Investigators**

Botswana: Max Essex, Joseph Makhema

*Kenya*: Elizabeth Bukusi, Kenneth Fife, James Kiarie, Nelly Rwamba Mugo, Edwin Were, Craig Cohen, Carey Farquhar, Grace John-Stewart

Rwanda: Etienne Karita, Kayitesi Kayitenkore, Susan Allen

**South Africa**: David Coetzee, Guy de Bruyn, Sinead Delany-Moretlwe, Glenda Gray, James McIntyre, Helen Rees

Tanzania: Rachel Manongi, Saidi Kapiga

Uganda: Elly Katabira, Allan Ronald

**Zambia**: Mubiana Inambao, William Kanweka, Bellington Vwalika, Susan Allen

